
Modules
and

Packages

1

1. Python Modules

2. Loading the module in our python code

➢ The import statement

➢ The from-import statement

3. Renaming a module

4. The reload() function

5. Scope of variables

6. Python packages

2

Index

3

1. Python Modules

A python module can be defined as a python program file
which contains a python code including python functions,
class, or variables. In other words, we can say that our
python code file saved with the extension (.py) is treated as
the module. We may have a runnable code inside the python
module.

Modules in Python provides us the flexibility to organize the
code in a logical way.

Example:

In this example, we will create a module named as file.py
which contains a function func that contains a code to print
some message on the console.

Let's create the module named as file.py.

#displayMsg prints a message to the name being passed.

def displayMsg(name)
print("Hi "+name);

4

❑ The import statement

❑ The from-import statement

2. Loading the module in our python code

The import statement

The import statement is used to import all the functionality of
one module into another. Here, we must notice that we can use
the functionality of any python source file by importing that file
as the module into another python source file.

5

We can import multiple modules with a single import
statement, but a module is loaded once regardless of the
number of times, it has been imported into our file.

The syntax to use the import statement is given below.

import module1,module2,........ module n

6

Example:

import file;
name = input("Enter the name?")
file.displayMsg(name)

Enter the name?John
Hi John

Output:

7

The from-import statement

Instead of importing the whole module into the namespace,
python provides the flexibility to import only the specific
attributes of a module. This can be done by using from? import
statement. The syntax to use the from-import statement is
given below.

from < module-name> import <name 1>, <name 2>..,<name n>

8

calculation.py:

#place the code in the calculation.py
def summation(a,b):

return a+b
def multiplication(a,b):

return a*b;
def divide(a,b):

return a/b;

9

Main.py:

from calculation import summation
#it will import only the summation() from calculation.py

a = int(input("Enter the first number"))
b = int(input("Enter the second number"))
print("Sum = ",summation(a,b))

‘’’we do not need to specify the module name while
accessing summation()’’’

10

Output:

Enter the first number10
Enter the second number20
Sum = 30

11

from <module> import *

The from...import statement is always better to use if we
know the attributes to be imported from the module in
advance. It doesn't let our code to be heavier. We can also
import all the attributes from a module by using *.

Consider the following syntax.

12

13

3. Renaming a module

Python provides us the flexibility to import some module with a
specific name so that we can use this name to use that module
in our python source file.

The syntax to rename a module is given below.

import <module-name> as <specific-name>

‘’’the module calculation of previous example is imported in
this example as cal.’’’
import calculation as cal;
a = int(input("Enter a?"));
b = int(input("Enter b?"));
print("Sum = ",cal.summation(a,b))

Example:

Enter a?10
Enter b?20
Sum = 30

Output:

14

15

4. The reload() function

As we have already stated that, a module is loaded once
regardless of the number of times it is imported into the
python source file. However, if you want to reload the already
imported module to re-execute the top-level code, python
provides us the reload() function. The syntax to use the
reload() function is given below.

reload(<module-name>)

16

5. Scope of variables

In Python, variables are associated with two types of scopes.
All the variables defined in a module contain the global scope
unless or until it is defined within a function.

All the variables defined inside a function contain a local
scope that is limited to this function itself. We can not access
a local variable globally.

Example:

name = "john"
def print_name(name):

print("Hi",name) #prints the name that is local to this
function only.
name = input("Enter the name?")
print_name(name)

17

Output:

Hi David

18

6. Python packages

The packages in python facilitate the developer with the
application development environment by providing a
hierarchical directory structure where a package contains
sub-packages, modules, and sub-modules. The packages are
used to categorize the application level code efficiently.

Let's create a package named Employees in your home
directory. Consider the following steps.

1. Create a directory with name Employees on path /home.

2. Create a python source file with name ITEmployees.py on the
path /home/Employees.

ITEmployees.py

19

def getITNames():
List = ["John", "David", "Nick", "Martin"]
return List;

3. Similarly, create one more python file with name
BPOEmployees.py and create a function getBPONames().

20

4. Now, the directory Employees which we have created in the
first step contains two python modules. To make this
directory a package, we need to include one more file here,
that is __init__.py which contains the import statements of
the modules defined in this directory.

21

__init__.py

from ITEmployees import getITNames
from BPOEmployees import getBPONames

5. Now, the directory Employees has become the package
containing two python modules. Here we must notice that we
must have to create __init__.py inside a directory to convert this
directory to a package.

22

6. To use the modules defined inside the package Employees,
we must have to import this in our python source file. Let's
create a simple python source file at our home directory
(/home) which uses the modules defined in this package.

Test.py

23

import Employees
print(Employees.getNames())

6. To use the modules defined inside the package Employees,
we must have to import this in our python source file. Let's
create a simple python source file at our home directory
(/home) which uses the modules defined in this package.

Test.py

24

import Employees
print(Employees.getNames())

